ТЕОРЕТИЧЕСКИЙ АНАЛИЗ РАСПРОСТРАНЕНИЯ ПОТЕНЦИАЛА ДЕЙСТВИЯ У РАСТЕНИЙ С ИСПОЛЬЗОВАНИЕМ ДВУМЕРНОЙ СИСТЕМЫ ВОЗБУДИМЫХ ЭЛЕМЕНТОВ

> <u>Сухов В.С.</u> Неруш В.Н. Морозова Е.Н. Воденеев В.А.

Нижегородский государственный университет им. Н.И. Лобачевского

кафедра биофизики

Схема механизма генерации потенциала действия у высших растений

Предполагаемые пути распространения потенциалов действия (ПД) у высших растений

Цель:

Провести теоретический анализ распространения потенциала действия у высших растений с использованием двумерной системы возбудимых элементов

Электрофизиологическая схема растительной клетки и основные уравнения, лежащие в основе модели генерации ПД

Описание мембранного потенциала (E_m), с использованием дифференциального уравнения:

$$\frac{dE_m}{dt} = \frac{1}{C} \cdot \sum Fj_r \qquad r \in (K^+, Cl^-, H^+, Ca^{2+})$$

1

Стационарное описание мембранного потенциала (Е_m):

$$E_{m} = \frac{g_{K}E_{K} + g_{Cl}E_{Cl} + g_{Ca}E_{Ca} + g_{PH}E_{PH} + g_{PCa}E_{PCa} + g_{Sy}E_{Sy}}{g_{K} + g_{Cl} + g_{Ca} + g_{PH} + g_{PCa} + g_{Sy}}$$

$$E_{PH} = \frac{\Delta G_{ATP}}{F} + E_{H}$$

$$E_{PCa} = \frac{\Delta G_{ATP}}{F} + E_{Ca} - E_{H}$$

$$E_{PHCl} = E_{Cl} + 2E_{H}$$

$$g_{k} = \frac{Fj_{k}}{E_{m} - E_{k}}$$

Генерация ПД, вызванного электрической стимуляцией

Генерация ПД, вызванного постепенным охлаждением

Схема двумерной системы возбудимых элементов (а) и взаимодействий отдельной клетки (б)

Схема двумерной системы возбудимых элементов (а) и взаимодействий отдельной клетки (б)

Уравнение для мембранного потенциала клетки (I;w):

$$E_{m}^{lw} = \frac{g_{K}E_{K} + g_{Cl}E_{Cl} + g_{Ca}E_{Ca} + g_{PH}E_{PH} + g_{PCa}E_{PCa} + g_{Sy}E_{Sy} + \sum_{k,s}g_{lwks}E_{m}^{ks}}{g_{K} + g_{Cl} + g_{Ca} + g_{PH} + g_{PCa} + g_{Sy} + \sum_{k,s}g_{lwks}}$$

(k;s) соответствует (l-1;w), (l+1;w), (l;w-1) или (l;w+1)

Уравнение описывающее изменение концентрации иона r в апопласте клетки (I;w) вследствие диффузии:

$$\frac{d[r]_{out}^{lw}}{dt} = \frac{D_r}{a^2 (1 + V_{cell} / V_{ap})} \sum_{k,s} \left([r]_{in}^{ks} - [r]_{in}^{lw} \right)$$

Пассивное (а) и активное (в) распространение электрического 15 сигнала и зависимость (б) амплитуды электрического ответа от расстояния (х) до стимулированного участка (A_e^{H-ATPase}=0.7, g=0.04 См см⁻²)

Количественное сравнение показателей имитированных моделью электрических ответов (A_e^{H-ATPase}=0.7, g=0.04 См см⁻²) с экспериментальными

Показатель	Модель	Эксперимент	Источник
λ	2.9 мм	2.8-5.5 мм	Пятыгин, 2008
Скорость распространения ПД	6 мм с ⁻¹	~мм с ⁻¹ - ~см с ⁻¹ (5±2 мм с ⁻¹)	Zavadzki et al. 1991; Fromm et al. 1995; Stancovic et al. 1998; Favre et al. 2001; Felle and Zimermann 2007 и др. (Пятыгин, 2008)
Порог в зоне раздражения (постепенное охлаждение)	36 мВ	30-70 мВ	Пятыгин, 2008
Порог вне зоны раздражения	20 мВ	12-30 мВ	Пятыгин, 2008
Суммарная амплитуда ответа в зоне раздражения (постепенное охлаждение)	115 мВ	100-120 мВ	Опритов и др., 1991, 2002, 2005; Пятыгин и др. 1999а, 1999b
Амплитуда ПД вне стимулируемой зоны	105 мВ	30-100 мВ и более	Опритов, 1991; Zavadzki et al. 1991; Fromm et al. 1995; Stancovic et al. 1998; Favre et al. 2001; Favre and Degli Agosti 2007
Длительность импульса в зоне раздражения (постепенное охлаждение)	30 c	~ с - ~десятков с	Опритов и др. 1991, 2002; Fromm et al. 1995; Krol et al. 2004; Воденеев и др. 2006, 2007; Favre and Degli Agosti 2007
Длительность ПД вне стимулируемой зоны	26 c		

Зависимость кабельной постоянной (λ) от g (a) и A_e^{H-ATPase} (б) при моделировании пассивного распространения сигнала

Зависимость скорости распространения (V_{AP}) от g (a) и А_е^{H-ATPase} (б) при моделировании распространения ПД

Зависимость температурного порога (ΔT) и пороговых изменений мембранного потенциала в зоне стимуляции (ΔE_m^S) и вне ее (ΔE_m^U) от g (а) и А_е^{н-дтраse} (б) при моделировании распространения ПД

Зависимость скорости распространения (V_{AP}) (а) и и температурного порога (ΔT) (б) от количества линий ситовидных элементов (СЭ) в системе (g=0.04 См см⁻², g^{SE}=0.2 См см⁻²)

Выводы:

 Разработана и верифицирована математическая модель распространения ПД по растению.

2. Показано, что активность H⁺-АТФазы и межклеточная проводимость могут оказывать существенное влияние на пассивное и активное распространение электрических сигналов

3. Показано, что введение в систему линий клеток, имитирующих ситовидные элементы, существенно ускоряет распространение ПД

Благодарю за внимание!

Значения ∆t (метод Эйлера) использованные при 13 численном решении уравнений модели распространения ПД

Δt₁=100 мс – при решении уравнений, описывающих процессы генерации ПД

Δt₂=25 мкс – при описании электротонического распространения изменений мембранного потенциала между клетками

Δt₃=10 мс – при описании диффузии ионов, между участками апопласта соседних клеток

Зависимость потенциала покоя от активности H⁺-АТФазы (А_е^{H-АТФазы}) и динамика E_m в отсутствии раздражения при различных А_е^{H-АТФазы}

$$\lambda = \sqrt{\frac{g_{in}}{g_m}}$$

При изменении межклеточной проводимости:

$$\lambda \sim \sqrt{g_{in}} \sim \sqrt{g}$$

При изменении активности Н+-АТФазы:

$$\lambda \sim 1/\sqrt{\sum g_{it} + g_{PH}} \sim 1/\sqrt{const + A_e^{H-ATPase}}$$

Зависимость кабельной постоянной (λ) от g (a) и A_e^{H-ATPase} (б) 19 при моделировании пассивного распространения сигнала

