Формализованное описание когнитивных процессов

(Обработка информационных сигналов в нейроноподобных системах).

В. Г. Яхно,

yakhno@appl.sci-nnov.ru, Институт прикладной физики РАН, Нижний Новгород, Россия В настоящее время во многих мировых научных центрах активно проводятся исследования, направленные на разработку симуляторов динамических процессов, связанных с функционированием живых систем. Такие симуляторы позволяют моделировать операции восприятия и осознания сенсорных сигналов, а также представлять и аккумулировать знания не хуже, чем такие операции выполняются их живыми прототипами.

НЕЙРОБИОЛОГИЯ

- в 2005 г. IBM and The Ecole Polytechnique Fédérale de Lausanne (EPFL) запустили «the Blue Brain Project», объединяющий усилия ведущих специалистов в области нейронауки и компьютерных технологий для создания интерактивной детальной модели коры головного мозга на базе суперкомпьютера IBM's eServer Blue Gene;
- Ch. Koch, Computation and Neural System Program, California Institute of Technology симуляторы осознанной перцепции для зрительного сигнал
 - J. Hawkins, the Neuroscience Institute, Redwud (RNI)) мультимедийная системы осознания с технологическими приложениями
- M. Izhikevich, G. M. Edelman, The Neurosciences Institute, San Diego симулятор мозга с детальным воспроизведением анатомических данных о структуре отделов мозга

Разработка экспертных систем этого типа является магистральным направлением международной программы «Декада разума».

Цель доклада

- Представить версию моделей, позволяющих создать устройство, выполняющее операции распознавания и реагирования аналогичные тем, которые известны для живых систем.

(Архитектура устройства, определение режимов преобразования информации для достижения заданной точности принятия решений, формализованное описание и сопоставление с процессами «мышления» в живых системах).

- Рассматриваются пути создания устройства для параллельно—последовательной обработки информации, выполняющее операции распознавания с заранее заданной точностью в реальном масштабе времени.
- Рассмотреть возможные практические шаги по созданию симуляторов живых систем (КОГНИТИВНЫХ ПРОЦЕССОВ).

Стандартный вопрос:

в механизмах обработки информации чем живая система отличается от компьютера?

- 1. Быстрая обработка больших потоков информации.
- 2. Существование механизма настройки на различные изменения в «ситуациях» работы.

(смена «целей» работы живой системы; выбор в текущей ситуации наиболее «оптимальной цели» для живой системы; ...).

- 3. Существование иерархии операций распознавания.
- 4. Автономность.

Стандартный вопрос: в механизмах обработки информации чем живая система отличается от компьютера?

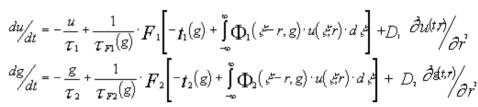
При этом, несмотря на большой поток работ в этой области существуют неоднозначные, а иногда и путанные трактовки в определении таких важных понятий при сопоставлении режимов работы технических и живых систем: что такое сознательные, бессознательные процессы, интуиция, внимание, когнитивные процессы и т.д.?

В работах по инженерной психологии (исследования эффективности систем человек — машина) получено множество данных о порогах чувствительности, характеристиках памяти, сенсорных каналах восприятия информации у человека.

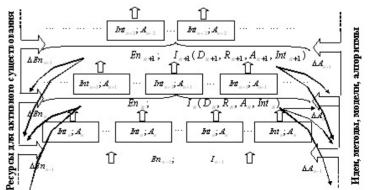
Например, измерено, что время осознания любого сигнала лежит в диапазоне $\sim 30-200$ мсек.

Вопрос о механизмах остается открытым

Из-за сильной вариабельности параметров в практических условиях рекомендуется использовать сигналы с оперативными порогами в 10-15 раз выше соответствующих абсолютных или дифференциальных порогов.


Справочник по инженерной психологии/Под ред. Б.Ф.Ломова. – М.: Машиностроение, 1982

Сравнение подходов


- Научный
 - Задача: понять как устроен объект сам по себе
 - Информация: чем больше, тем лучше
 - Метод: вникать во все детали

- Инженерный
 - Задача: достичь свою цель используя объект
 - Информация: лишь самая необходимая
 - Метод: усвоить основной механизм

- 1. Процессы формирования наборов из «элементарных» признаков, детекторов сигнала
- 2. Процессы формирования наборов из «элементарных» операций распознавания, «элементарных» психологических режимов реагирования распознающих ячеек
- 3. Описание «высших» уровней поведения (психологических режимов) в сложной архитектуре систем из иерархии распознающих ячеек

Модели неравновесных (нейроноподобных) систем

- Распределенные нейроноподобные системы состоят из:
- - активных элементов с **несколькими устойчивыми** (или «квазиустойчивыми») состояниями;
- взаимодействие между такими неравновесными элементами осуществляется за счет нелокальных пространственных связей.

- 1) Модули 1-го уровня, представленные наборами однородных нейроноподобных систем, описывают режимы быстрого (параллельного) кодирования информационных сигналов (изображений).
- 2) Модули 2-го уровня, представленные элементарными «адаптивными распознающими системами», описывают процессы формирования наборов «элементарных» операций распознавания. С их помощью реализуются «простейшие» психологические режимы реагирования распознающей системы. Модули 2-го уровня могут строиться из модулей 1-го уровня.

Возможность совместного функционирования подсистемы кодирования и дополнительной подсистемы «внутренней имитации» ожидаемого входного сенсорного сигнала (опережающего отражения действительности) и циклические (рекурсивные) процессы позволяют обеспечить выбор наиболее подходящей фильтрующей маски на входное изображение.

Этот процесс элементарного «осознания» образа входного информационного сигнала связан с динамическими режимами кодирования — восстановления и поиском оптимальных алгоритмов в распознающей системе для повышения точности ее работы.

2) Модули 2-го уровня, представленные элементарными «адаптивными распознающими системами», описывают процессы формирования наборов «элементарных» операций распознавания. С их помощью реализуются «простейшие» психологические режимы реагирования распознающей системы. Модули 2-го уровня могут строиться из модулей 1-го уровня.

Возможность совместного функционирования подсистемы кодирования и дополнительной подсистемы «внутренней имитации» ожидаемого входного сенсорного сигнала (опережающего отражения действительности) и циклические (рекурсивные) процессы позволяют обеспечить выбор наиболее подходящей фильтрующей маски на входное изображение.

Этот процесс элементарного «осознания» образа входного информационного сигнала связан с динамическими режимами кодирования — восстановления и поиском оптимальных алгоритмов в распознающей системе для повышения точности ее работы.

Бессознательная обработка входного сигнала соответствует случаям отсутствия циклов, когда наиболее оптимальный (точный) режим работы уже найден.

- 2) Модули 2-го уровня, представленные элементарными «адаптивными распознающими системами», описывают процессы формирования наборов «элементарных» операций распознавания. С их помощью реализуются «простейшие» психологические режимы реагирования распознающей системы. Модули 2-го уровня могут строиться из модулей 1-го уровня.
- 3) Модули 3-го уровня, с архитектурой из иерархии взаимодействующих распознающих систем (модулей типа 2), позволяют описывать «высшие» уровни поведения распознающих систем. На этом уровне настройка на более точное принятие решений соответствует психологическим режимам, в которых для анализа сенсорной информации приходится оперировать с иерархическими наборами образов.

- 1. Заранее определенная фильтрация входных сенсорных сигналов (изображений).
- 1.4. Прикладные результаты. Важно отметить, что на основе таких «фильтров» сейчас возможно создание эффективных систем распознавания.

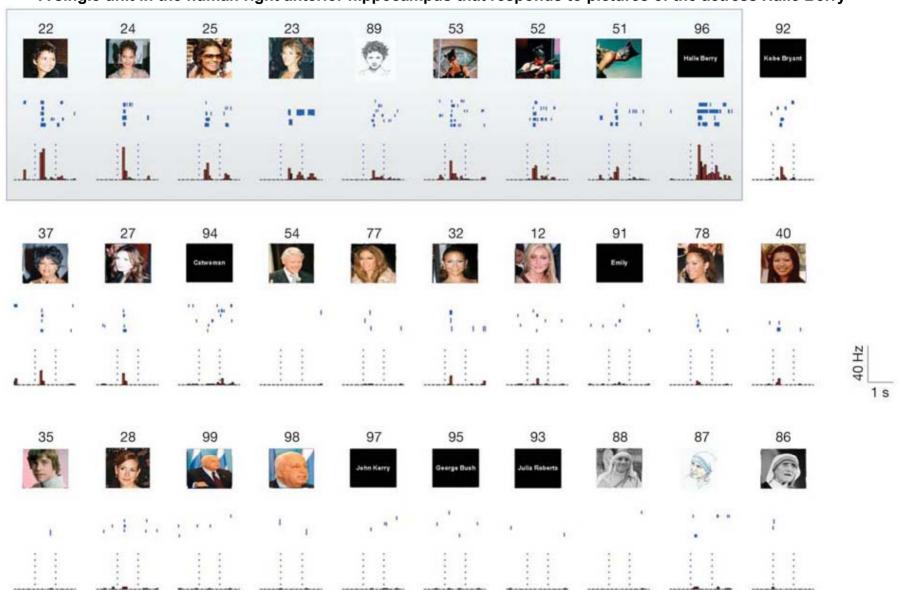
В работах А.А.Тельных О.В. Шемагиной и др.; А.В.Ковальчук, М.Е.Соколов; М.Е.Соколов, А. В. Ковальчук, А. А. Тельных

- более подробная информация.

Пример работы детектора, настроенного по изображению с большим числом лиц

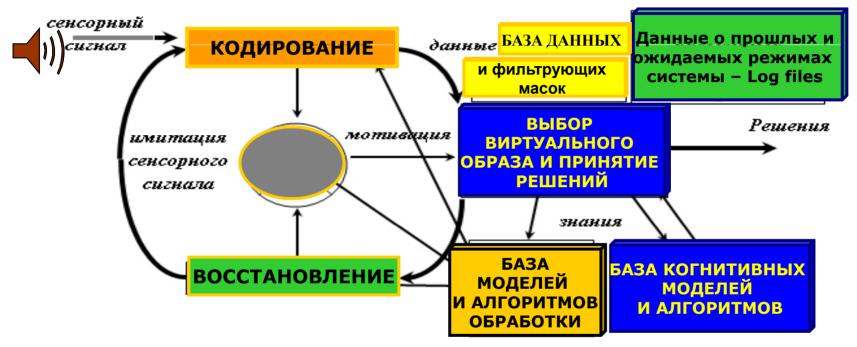
2) Модули 2-го уровня, представленные элементарными «адаптивными распознающими системами», описывают процессы формирования наборов «элементарных» операций распознавания. С их помощью реализуются «простейшие» психологические режимы реагирования распознающей системы. Модули 2-го уровня могут строиться из модулей 1-го уровня.

- Изучение «зеркальных» нейронов и систем.


Зеркальные нейроны реагируют только на *определённое* действие (не любое) и вне модальности стимула: когда субъект делает что-то сам, когда видит это действие или слышит о нём. Rizzolatti говорит и о *зеркальных системах*, которые есть практически во всех отделах мозга человека, и активируются, в том числе, при *предвидении* действия, при сопереживании эмоций или воспоминании о них и т.д

- Активация нейронов на конкретные объекты на изображении:

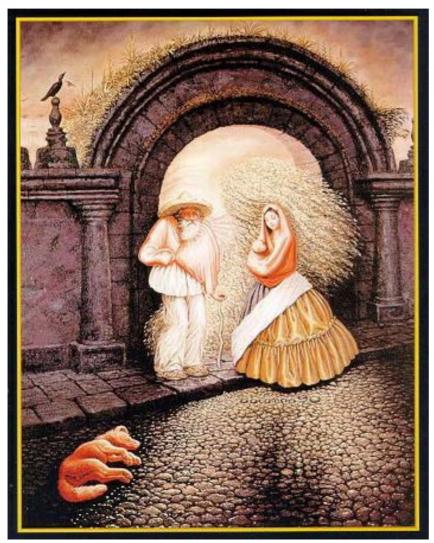
Например, нейрон «Билла Клинтона» X. Берри, или других известных людей.


Нейрон гиппокампа человека избирательно активируется при предъявлении фото, рисунка, имени актрисы X.Берри:

A single unit in the human right anterior hippocampus that responds to pictures of the actress Halle Berry

R. Quian Quiroga et al., *Nature*, 2005

2. Функциональные схемы нейроноподобных адаптивных распознающих систем для управления моделями внешних объектов и событий


- Распознающая система «опознает» только те объекты, которые она «ожидает», для которых у системы имеются модельные описания.
- Системы, похожие на живые прототипы, работают только на основе потока ПРЕДСКАЗАНИЙ, внутренних ПРОГНОЗОВ.

Опираясь на формальную схему, можно сказать, что в функциональном смысле каждая система «выполняет операции в своем сне».

Термин «сон» подразумевает активность системы, связанную с обработкой исключительно внутренних информационных сигналов, использованием наборов моделей поведения, которые были активированы в этой живой или технической системе внешними воздействиями.

Степень адекватности внутренних информационных сигналов смыслу внешних, «реальных», воздействий зависит от возможностей рассматриваемой адаптивной системы настроить свой «сон» на эти внешние сигналы.

Что Вы видите?

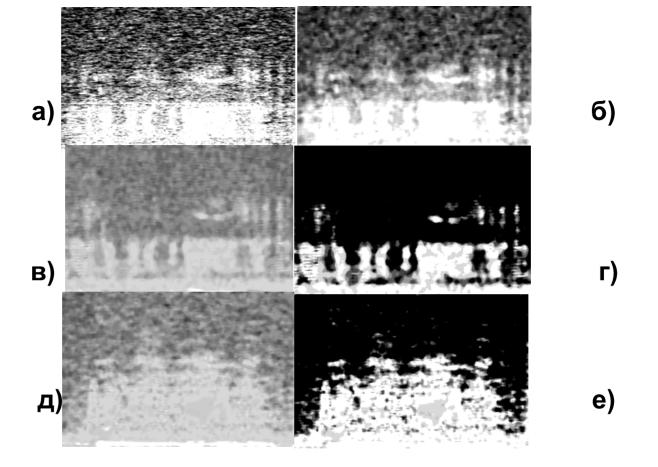
- 2. Функциональные схемы нейроноподобных адаптивных распознающих систем для управления моделями внешних объектов и событий
- 2.1. Формирование фильтрующей маски для входного образа.

Циклические процессы обработки входного сигнала необходимы для формирования **ФИЛЬТРУЮЩЕЙ МАСКИ**, накладываемой на входное изображение (входной информационный сигнал).

- 2. Функциональные схемы нейроноподобных адаптивных распознающих систем для управления моделями внешних объектов и событий
- 2.2. Для модели входного образа вычисляется мера похожести (невязка).

Ценность входного сигнала в зависимости от вычисленной меры по полю невязок.

Процессы в «зеркальных» нейронах и системах.


- 2. Основные переменные функциональной распознающей системой
- 1. Наборы моделей и алгоритмов для обработки изображений объектов и выполнения когнитивных операций управления моделями объектов.
- 2. Времена обработки сигналов (как для циклических, «осознанных», так и для «бессознательных» преобразований сенсорных сигналов).
- 3. Кодовые описания (признаки) и соответствующие им фильтрующие маски (формируются во время циклических процессов).
- 4. Величины мотивационных сигналов в распознающей системе.
- 5. Принятые решения.

2.3. Определения.

Можно ввести, как минимум, три типа ФИЛЬТРУЮЩИХ МАСОК, трансформирующих входное изображение:

- А) Маски для более точной сегментации объекта и повышения точности распознавания (определяется в процессе прокруток);
- В) Маски для «вытеснения» образа на исследуемом изображении (задаются, например, отрицательной эмоциональной оценкой).
- С) Маски временного стробирования входного потока изображений.

Пример взаимного подбора алгоритмов фильтрации шумового и информационного сигналов в соответствии со схемой из работы: Яхно В.Г., Нуйдель И.В., Тельных А.А., Хилько А.И., и др. "Способ адаптивного распознавания информационных образов и система для его осуществления", Патент Российской Федерации №2160467, 1999. ; Yakhno V.G., Nuidel I.V., Telnykh A. A., Bondarenko B.N., Sborshikov V.A., Khilko A.I. The method for adaptive recognition of information images, and the system of implementation thereof. US Patent No.: US 6,751,353 B1, 2000.

Сопоставление режимов управления в нейроноподобных адаптивных распознающих системах

Формализованное описание с помощью различного вида признаков объектов и соответствующих им фильтрующих масок в технических нейроноподобных адаптивных распознающих системах

Процессы, регистрируемые в психофизических экспериментах:

- Апперцептивное искажение;
 - Перцептивная защита;
 - Прайминг;
- Установка (по Д.Н.Узнадзе);
 - Синдром Корсакова;
 - «интерференция» (по В.М.Аллахвердову);
- «вытеснение» (по 3. Фрейду);

Functional Scheme, Mathematical Models which use biologically inspired adaptive processes for recognition procedure – tuning of models for realization "Coding" – "Recovery, Reconstruction, Self-Identification" processes (so called now neuronal mirror systems),

P.K. Anokhin (papers and publications in period 1935 – 1978)

Edelman, G.M. (1989) The remembered present. A biological Theory of consciousness. New York: Basic Books.

Ivanitsky, A.M. (1976) Brain mechanisms of signals estimating. Moscow: Medicine Publishers. (in Russian).; Ivanitsky, A.M., Streletz, V.B. and Korsakov, M.A. (1984) Information Processes of the Brain and Mental Activity. Moscow: Nauka Publishers. (in Russian). Ivanitsky, A.M. (1996) Brain basis of subjective experience: information synthesis hypothesis. Journal of Higher Nervous Activity, 46(2), 241-252. (in Russian).

Grossberg S. (1988) Nonlinear neural networks: Principles, Mechanisms and Architectures. *Neural Networks*, 1, 17-61. ; **Grossberg S.** (1995) The attentive brain. *American Scientist*, 83, 438-449.

Sergin V. Ya. (1999), Self-Identification and Sensori-Motor Rehearsal as Key Mechanisms of Consciousness. *International Journal of Computing Anticipatory Systems*, № 4, pp. 81-99.

Sergin V. Ya., 2000, Sensory Awareness: Hypothesis of Self-Identification. In "Conceptual Advances in Brain Research". UK: Harwood Academic Publishers, **V.2.** pp. 97-112.

L.I. Perlovsky Toward physics of the mind, 2006

B.M.Velichkovsky, Когнитивная наука. Смысл. 2006 ; Современные проблемы восприятия. 1982

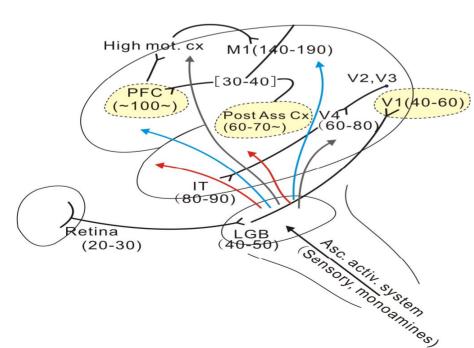
П.В. Симонов, Эмоциональный мозг. 1981

В.М. Аллахвердов, Сознание как парадокс. ДНК, 2000

Yu. Alexandrov, Emotions and consciousness, 1996; Levels of consciousness related with the dynamics of behavior, 1996,

Циклические пути передачи сигналов в мозге, связанные с восприятием и «процессами осознания»

Цикличность когнитивной обработки сенсорного сигнала отражена **в функциональной системе П.К.Анохина**, цикле информационного синтеза А.М.Иваницкого, повторном входе «re-entering» Дж.Эдельмана, цикле самоидентификации В.Я.Сергина, циклах К.Кавамура, цикле с перцептивной готовностью Дж.Бруннера, и т.д.


Циклические пути передачи сигналов в мозге, связанные с восприятием и «процессами осознания»

Цикличность когнитивной обработки сенсорного сигнала отражена в функциональной системе П.К.Анохина , **цикле информационного синтеза А.М.Иваницкого,** повторном входе «re-entering» Дж.Эдельмана, цикле самоидентификации В.Я.Сергина, циклах К.Кавамура, цикле с перцептивной готовностью Дж.Бруннера, и т.д.

Циклические пути передачи сигналов в мозге, связанные с восприятием и «процессами осознания»

обработки Цикличность когнитивной сенсорного отражена сигнала функциональной системе П.К.Анохина, информационного цикле синтеза А.М.Иваницкого, повторном входе «re-Дж.Эдельмана, **entering**» цикле В.Я.Сергина, самоидентификации К.Кавамура, циклах цикле перцептивной готовностью Дж.Бруннера, И Т.Д.

2.4. Определения.

Динамический процесс кодирования (входное изображение -> признаки) — восстановления (признаки -> новое изображение - интерпретация входного сигнала) и поиск оптимальных алгоритмов в модельной системе определяется как простейший режим проявления «СОЗНАНИЯ»

(процесс «обдумывания» -> «Кратковременная память») в такой технической системе.

«Сознание» - процесс прокруток сигнала в «кратковременной памяти».

2.4. Определения.

Важно, что циклический процесс кодирования — восстановления (прокруток сигнала) «СОЗНАНИЕ» - позволяет вычислять дополнительные признаки, которые активируют модуль эмоций (для ощущения сознания).

(30ms < T C_conscious <~200ms - время Самоидентификации для человека).

Conscious

2.5. Определения.

Бессознательный процесс -> кодирование -> формирование мотивационного стимула -> сигналы на модули исполнительных механизмов (виртуальное представление входного сигнала в системе отсутствует).

Бессознательные режимы поведения предполагают неосознаваемое принятие решений для хорошо обученной системы.

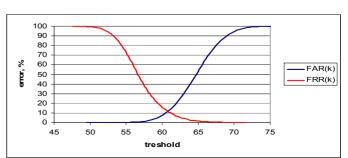
Tunconscious

2.6. Определения.

Механизмы «интуиции» связаны с решениями («сознательными» или «бессознательными»), принятыми в условиях отсутствия предыдущего опыта о текущей задаче.

Tconscious; Tunconscious

2.7. Определения.

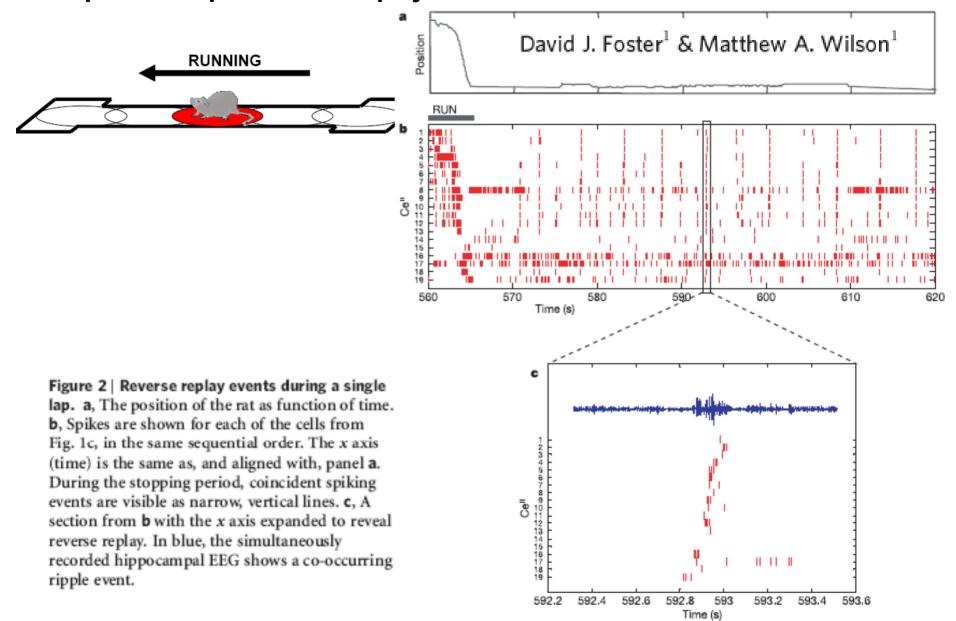

Формальное описание процесса внимания к ожидаемому изображению объекта в такой функциональной модели соответствует выбору и использованию пакета моделей (алгоритмов), которые соответствуют работе распознающего модуля с ожидаемым изображением объекта.

2. Функциональные схемы нейроноподобных адаптивных распознающих систем.

2.8. Определение.

Когнитивный процесс – что это такое?

Основные переменные когнитивной системы (нейроноподобная адаптивная распознающая система) могут быть измерены экспериментально


- 1. Наборы моделей и алгоритмов для обработки изображений объектов и выполнения когнитивных операций управления моделями объектов.
- 2. Времена обработки сигналов (как для циклических, «осознанных», так и для «бессознательных» преобразований сенсорных сигналов).
- 3. Кодовые описания (признаки) и соответствующие им фильтрующие маски.
- 4. Величины мотивационных сигналов в распознающей системе.
- 5. Принятые решения.

Когнитивные процессы связаны с операциями модификации моделей и алгоритмов распознающей системы, кодовых данных и соответствующих им фильтрующих масок, ориентированных на повышение точности выполнения целевых функций системы.

Некоторые феномены сознания

- 1. Слияние «мерцаний» последовательные события, попадающие в один цикл самоотождествления, воспринимаются как одновременные.
- 2. Шесть букв, показанных последовательно, кажутся одновременными внутри интервала около 60 мс (Дж. Хайлан).
- 3. «Фи- феномены» для кожной чувствительности и зрительного восприятия (И.Хофман, Ф.Джеральд, К.Шеррик).
- 4. Ощущение «мерцаний» входного непрерывного сигнала, если T_0 внутреннее время стробирования > T_1 -внутреннего времени осознания.
- 5. Другие эффекты, связанные с другими «измененными состояниями сознаниями» (в частности, гипноз, медитация).
- В.Я. Сергин «Сознание как система внутреннего видения», ЖВНД, т.44, вып. 4-5, 627-639, 1994.

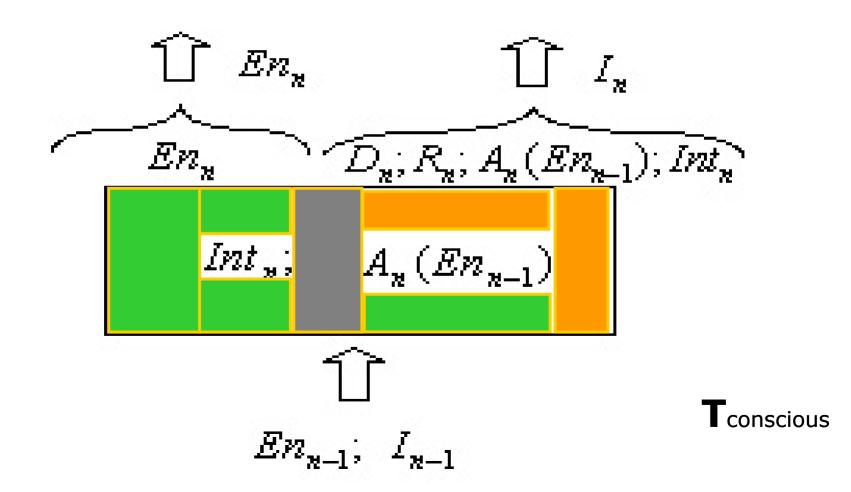
4.2. Примеры интерпретации циклов импульсной активности, демонстрирующих существование «мыслей» у крысы о пробежке к кормушке.

Таким образом, рассмотренные модели позволяют оценить варианты мер «интеллекта» распознающей системы и виды возможных когнитивных процессов.

В распознающей системе с подсистемой «виртуальной реальности» можно воспроизвести:

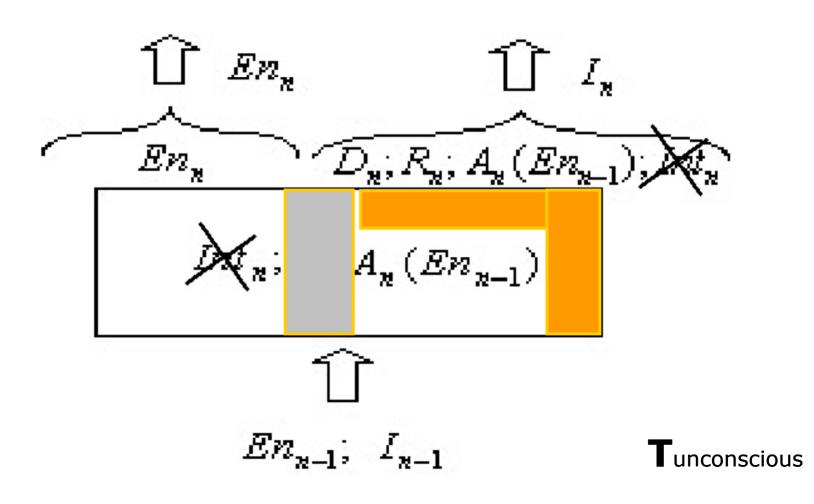
- элементарные процессы СОЗНАТЕЛЬНОЙ (БЕССОЗНАТЕЛЬНОЙ) обработки входных сигналов;
- режимы работы распознающей системы зависят от наборов моделей для обрабатываемого объекта (ВНИМАНИЕМ к изучаемому объекту) и набора «фильтрующих масок»; и др.

Однако реальность сложнее.

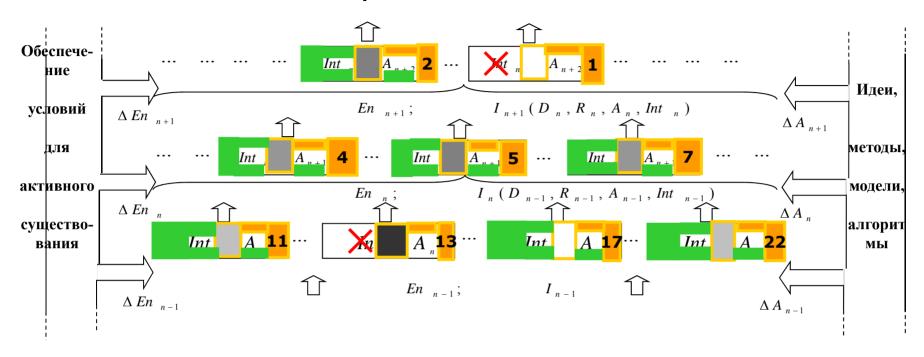

Для сравнения модельного описания с процессами в живых системах необходимо рассмотреть возможные варианты архитектур иерархической обработки сигналов.

Базовые нейроноподобные модули для конструирования «интеллектуальных» систем распознавания

3) Модули 3-го уровня, с архитектурой из иерархии взаимодействующих распознающих систем (модулей типа 2), позволяют описывать «высшие» уровни поведения распознающих систем. На этом уровне настройка на более точное принятие решений соответствует психологическим режимам, в которых для анализа сенсорной информации приходится оперировать с иерархическими наборами образов.


Адаптивная система <u>осознанного</u> принятия решений с фиксированным набором алгоритмов.

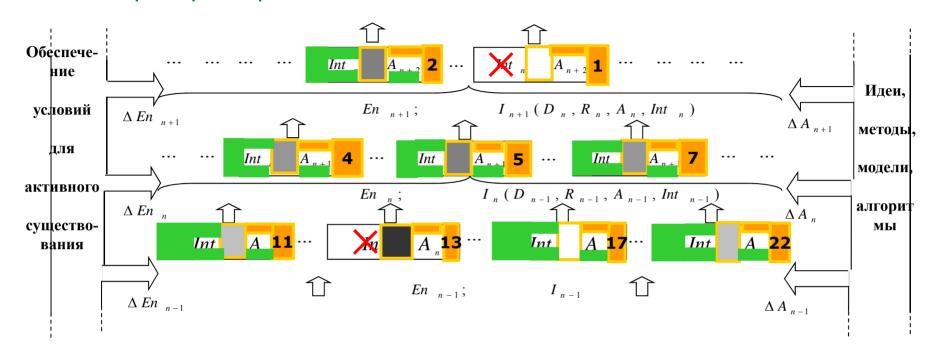
Схематическое представление процесса трансформации входного потока информационных данных в выходной поток информационных данных при заданной модели $A_{n}(En_{n-1})$ и времени \mathbf{T} conscious, необходимого для этой операции.



Адаптивная система бессознательного принятия решений с фиксированным набором алгоритмов.

Схематическое представление процесса трансформации входного потока информационных данных в выходной поток информационных данных при заданной модели $A_n(En_{n-1})$ и необходимого для этого времени \mathbf{T} unconscious.

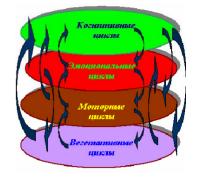
3. Варианты иерархической организации адаптивных распознающих систем.

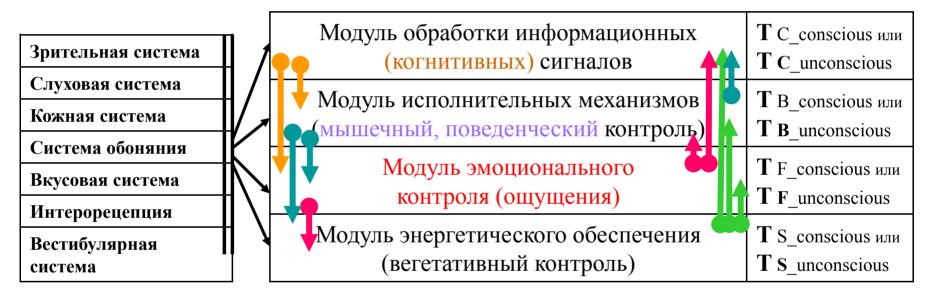


Варианты динамических структур МОТИВАЦИЙ, СОЗНАНИЯ, ОЖИДАЕМЫХ ОБРАЗОВ,

Схематическая модель временного изменения:

- Иерархии мотивов;
- Иерархии сознательных и бессознательных процессов;
- Иерархии ожидаемых образов (моделей) ВНИМАНИЕ;
- Иерархии принятых решений.

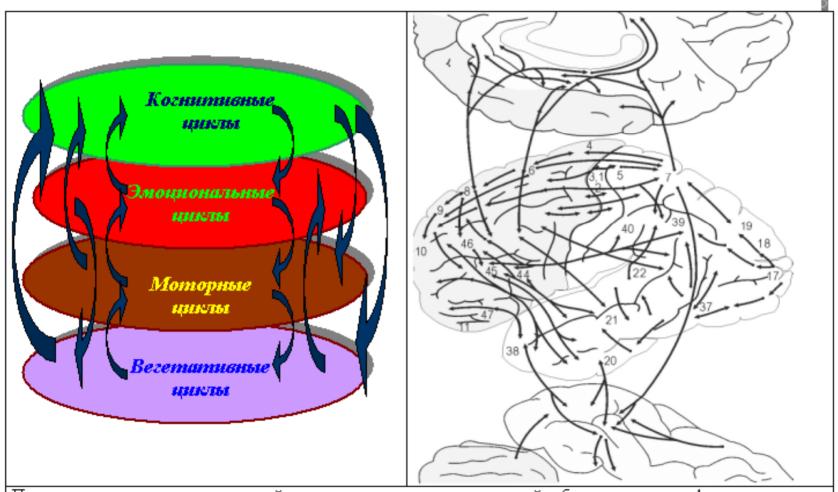

Активация модулей системы на конкретные объекты на изображении : Например, нейрон «Билла Клинтона»,



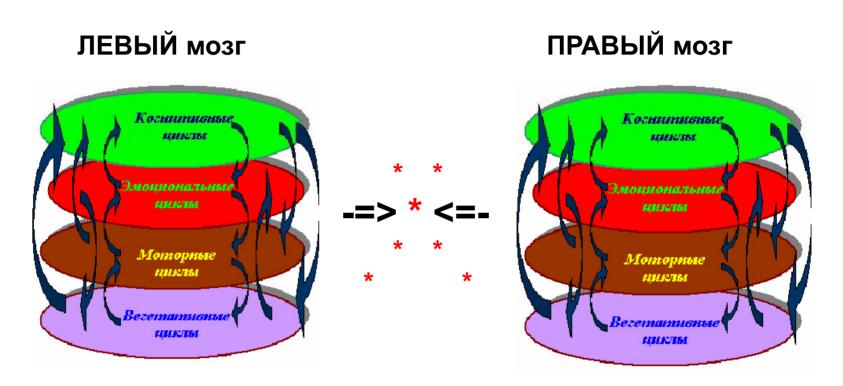
Варианты динамических структур МОТИВАЦИЙ, СОЗНАНИЯ, ОЖИДАЕМЫХ ОБРАЗОВ - ВНИМАНИЯ,

Схематическая модель преобразований входного информационного потока в выходные данные (при разных уровнях ЗНАНИЙ и ЭНЕРГЕТИЧЕСКОГО обеспечения в иерархической адаптивной системе принятия решений.

4. Схематическое представление известных взаимосвязей между основными модулями в «автономной» живой системе.



T C_conscious ~,< T B_conscious ~, < T F_conscious < T S_conscious


Взаимные связи при обработке информационных и управляющих сигналов между когнитивным, эмоциональным, мышечным, и энергетическими модулями.

Вложенность циклов. Возможность работы таких систем на активных средах произвольной физической природы.

Принципиальная схема взаимодействующих циклических модулей, обеспечивающих формирование когнитивных, эмоциональных, моторных и вегетативных компонентов сенсорного образа. Здесь и далее: справа — результаты нейробиологических измерений (К.Кавамура), слева — значительно упрощённая схема циклов.

Режимы конкуренции между полушариями мозга за управление организмом.

Синдром диссоциированного расстройства личности?

5. Примеры технической реализации описанных выше схем.

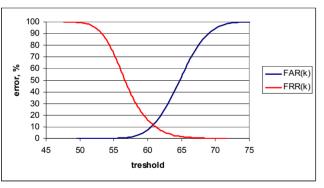
Насколько мне известно, В.Д. Цыганков, А.А.Жданов, А.И.Самарин, Ю.И.Нечаев, G.M.Edelman,,

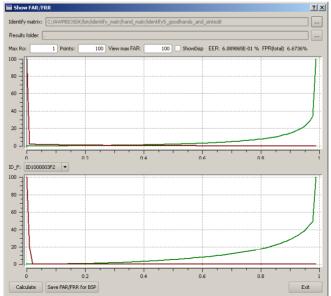
в своих работах реализовали «автономные» устройства на основе архитектур типа схемы П.К.Анохина.

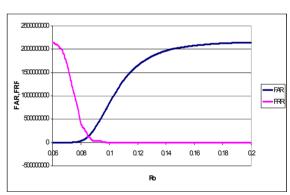
В нашей группе, в ИПФ РАН, также ведутся работы по созданию элементов медицинских симуляторов,


5. Варианты Интегральной Биометрической Системы.

Возможные применения разработанных систем:


- •контроль пассажиров в аэропорту;
- иммиграционный контроль, другие применения.


5. Примеры работы технических систем детектирования заранее заданных объектов. *Тельных А.А., Шемагина О.В., Беллюстин Н.С., Калафати Ю.Д., и др.*



Какой «интеллект» у этих систем?

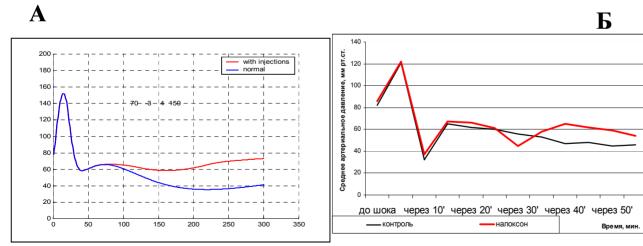
Мера «интеллекта» может быть оценена с помощью числа использованных в работе распознающей системы алгоритмов выполняемых операций с указанием величин ошибок.

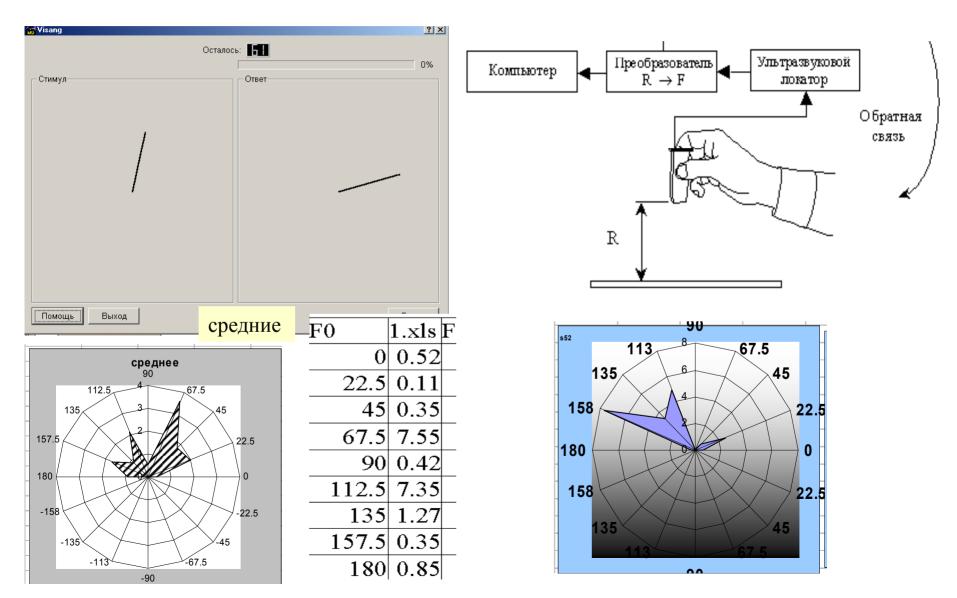
Оценки «интеллекта» технических систем

Система	Класс операций	Точность, Время работы	Осознанность
1. Варианты Интегральной Биометрической Системы. 2. Система распознавания музыкальных сигналов.	Предварительное целеуказание. Уточнение места цели. Идентификация человека. Предварительное нахождение, уточнение места фрагмента. Идентификация песни, звукового файла.	FAR ~ 0.1%; FRR ~ 5%; (для ~250 ID в БД) Т ~ 1 сек FAR ~ 1%; FRR ~ 7%; (для 271 песни из 1000 песен в БД) Т ~ 5-10 сек	Recognition: $N = (2-3)*4$ (Бессознательный режим). Enroll: $N = \sim (1/2)*2$ (Осознание объекта). Recognition: $N = (2-3)*4$ (Бессознательный режим). Enroll: $N = \sim 1/2$ (Осознание объекта).
3. поиск специальных изображений по контексту.	Нахождение заранее определенных объектов на изображениях	FAR ~ 20%; FRR ~ 10%; для~250 изобра- жений в БД	Recognition: N = 1-2 (Бессознательный режим). Enroll: N = ~(1/2)*2 (Осознание объекта).

Оценки «интеллекта» технических систем

Система	Класс операций	Точность	Осознанность
4. Демо - система видеонаблюдения с детектированием лиц и распознаванием по ним людей.	Предварительное целеуказание, уточнение места лица. Распознавание человека.	FAR ~ 1%; FRR ~ 7%; (для ~ 250 изображений лиц людей в БД) T ~ 0,02 сек, T ~ 1 сек	Recognition: N = 2 + 1 + 4 (Бессознательный режим). Enroll: N = ~(1/2)*2 (Осознание объекта).
5. Решатель интеллектуальных задач для предметной области «математика».	База элементарных операций — образуют инструментарий. Решение задач из учебников.	FAR ~ 0 ? %; FRR ~ 0 ? %; (для всех задач до 3-го курса включительно)	Recognition: $N \sim 40~000$ (Бессознательный режим?). Enroll: $N = \sim ??~000$ (Осознание объекта?).
6. Система группового управления роботами. Fg. 1. SoldWorks model of ANN-22	Модели состояний отдельного робота, модели внешнего мира (для виртуальных футбольных команд).	FAR ~ ? %; FRR ~ ? %;	Recognition: N = ? (Бессознательный режим ?). Enroll: N = ? (Осознание объекта).
7.			

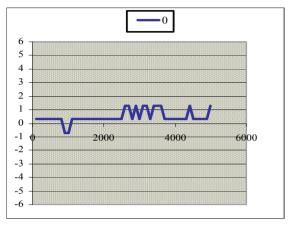

5. Пример подхода в разработке «медицинского» симулятора ПОСТРОЕНИЕ СИМУЛЯТОРОВ на основе сопоставления данных: динамические режимы моделей из «распознающих ячеек»; нейроархитектура и нейродинамика; психофизические данные.

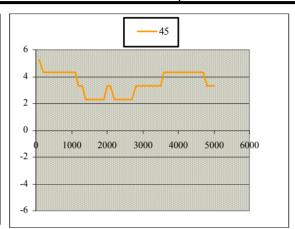

«ВНУТРЕННИЙ ОБРАЗ» - «ВРЕМЯ ОСОЗНАНИЯ»

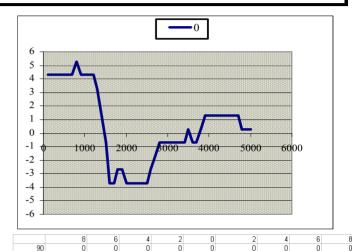
Артериальное давление при экзотоксиновом шоке и введении налоксона на 30-й минуте на модели (A) и в эксперименте (Б)

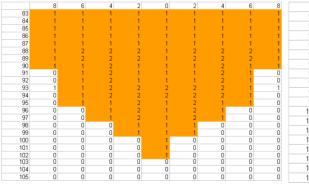
Режимы непонимания; Согласование мотивов, иначе «фильтрующие маски» будут мешать; Синдром Корсакова; «интерференция» (Аллахвердов); «вытеснение» (Фрейд); ...

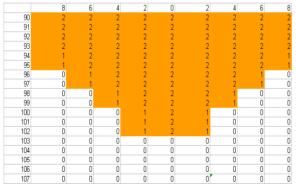
Психофизический эксперимент: моторное управление углом отрезка

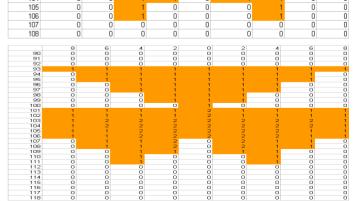



Психофизический эксперимент


Модель


Наличие во многих случаях систематической ошибки при удержании правильного направления линии.


Расчет паттернов активности для двух одинаковых взаимодействующих фильтров с небольшим смещением преимущественно выделяемого направления.



Пример динамики психологических состояний при КОНТАКТЕ «интеллектуальных систем».

when Tconscious for snail-like creature >> Tconscious for bear-like creature.

Представленный материал демонстрирует возможные контуры конструктора «интеллектуальных» систем.

Основные «базовые модели», идеи, подходы для разработки симуляторов живых систем уже существуют.

Известны примеры реализаций,

коллективы разработчиков.

Выводы

- Приведены базовые модели и динамические режимы обработки сигналов (язык описания), позволяют корректно описывать известные автору данные нейрофизиологических и психофизических экспериментов.
- Разработаны примеры технических устройств, обладающих функциями «осознанного» и «бессознательного» детектирования, распознавания заранее заданных объектов.
- Есть основания для проектирования симуляторов живых систем, включающих инструментальные средства для регистрации параметров осознания тестовых акустических и зрительных стимулов у пациентов в клинике.

Спасибо за внимание.

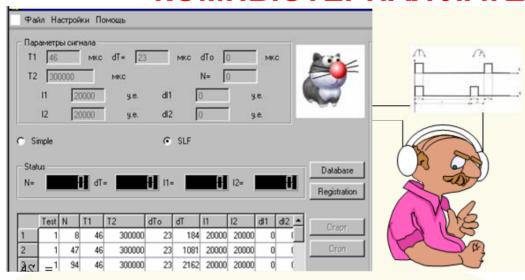
5. Пример режимов непонимания. Что важнее для человечества: бросить тысячу лучших умов на усовершенствование бомбы(или даже – пенициллина) или озадачить их проблемами национализма, психотерапии или эксплуатации?

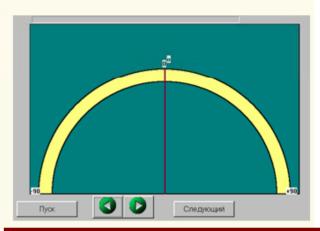
Центрирование на средствах в науке создает раскол между учеными и другими искателями истины, а также между различными методами поиска и понимания истины.

Если определить науку как поиск истины, понимания и озарения, а также озабоченность важными вопросами, было бы трудно разделить ученых, с одной стороны, и поэтов, художников, философов — с другой. Волнующие их проблемы вполне могут быть сходными. Конечно, если быть честным, различия все же есть: они касаются, прежде всего, специфических методов и техник профилактики ошибок. Очевидно, наука только выиграет, если разрыв между ученым и поэтом, философом сократится.

Центрирование на средствах попросту помещает их в разные миры.

Центрирование на проблеме позволит им видеть в друг друге соратников, готовых помочь друг другу. Судя по биографиям великих ученых, это действительно так. Среди выдающихся деятелей науки было много творческих личностей, получавших поддержку не только от коллегученых, но и от философов.


Абрахам Маслоу, МОТИВАЦИЯ и ЛИЧНОСТЬ. 3-е изд. / СПб.: Питер, 2008


Conclusion

- Proposed functional Neuron-Like models gives us opportunity to define a set of dynamical processes in accordance with psychophysical experiments data.
- The obtained results show that already at present, variants of the simulators based on neuron-like systems with the elements of "conscious" behavior can be realized in hardware-software complexes capable of adaptive tuning and specialized for particular neuropsychological applications.

Спасибо за внимание

КОМПЬЮТЕРНАЯ ЛАТЕРОМЕТРИЯ

ЗАДАЧИ:

- Сенсорная шкала пространственного слуха в виртуальной акустической среде;
- Влияние целевой функции на временные режимы формирования субъективного звукового образа;
- Измерение интерауральных пороговых задержек для латерализации дихотического стимула;
- Влияние вегетативного статуса, стресса, уровня тревожности на звуколокализационную функцию.

Сенсорная шкала пространственного слуха

Когнитивная реакция